17 research outputs found

    Reduction of Context Switches due to Task Synchronization in Uniprocessor and Multiprocessor Platform

    Get PDF
    The problem of frequent context switches in multitasking is a real scheduling overhead which wastes extra CPU cycles, memory and causes much delay in scheduling. This paper focuses on reducing the context switches that result due to blocking when jobs are required to synchronize. The Priority Ceiling Protocol (PCP) is used to synchronize the tasks in uniprocessor as well as multiprocessor platforms. The jobs are scheduled using Earliest Deadline First (EDF) policy. The simulation results show that the context switches are reduced by about 20% on an average using our technique of avoiding context switches due to blocking

    Design and development of smart interoperable electric vehicle supply equipment for electric mobility

    Get PDF
    The transportation industry at present is moving towards electrification and the number of electric vehicles in the market increased with the different policies of the directorate. Consumers, who wish to contribute to green mobility are concerned about the limited availability of charging points due to high manufacturing costs and the interoperability issues related to smart charging. This work proposes an Internet of things-based low-cost, interoperable smart electric vehicle supply equipment for deploying in all charging stations. The device hardware is designed to monitor, analyze, and collect consumed energy by the vehicle and transfer this data to a connected network. The pre-defined messages associated with the firmware will help to record this data with a remote management server for further processing. The messages are defined in JavaScript Object Notation (JSON), which helps to overcome the interoperability issue. The device is smart because it can gather energy usage, detect device faults, and be intimate with the controller for a better operational environment. The associated management servers and mobile applications help to operate the smart device remotely and keep track of the usage statics. The developed low-cost, interoperable smart model is most suitable for two and three-wheeler vehicles

    Dynamic Voltage Scaling With Reduced Frequency Switching And Preemptions

    Get PDF
    Dynamic Voltage Scaling is an innovative technique for reducing the power consumption of a processor by utilizing its hardware functionality. Dynamic Voltage Scaling processors are mainly focusing on power management. Such processors can be switch between discrete frequency and voltage levels. The main challenges of Dynamic Voltage Scaling are increased number of preemptions and frequency switching. A part of dynamic energy as well as CPU time is lost due to these processes. To limit such processes, an algorithm is proposed which reduces both unwanted frequency switching and preemptions

    Enhanced production of lupeol through elicitation in in vitro shoot cultures of snake grass (Clinacanthus nutans)

    Get PDF
    Clinacanthus nutans (Acanthaceae), generally known as ‘snake grass’, has diverse uses in customary system of herbal medicine. The species is endowed with various bioactive compounds exhibiting extensive pharmacological properties. The present investigation focused on elicitor-intervened in vitro shoot biomass cultivation and scale-up production of the anti-cancerous compound ‘lupeol’, one of the foremost constituents in this species. For the augmented production of lupeol, the shoot cultures were elicited with various concentrations of yeast extract (YE), chitosan and methyl jasmonate (MeJA). Maximum shoot biomass yield and production of lupeol was detected in MS medium supplemented with 1.0 mgl-1 BA and 400 mgl-1 YE. The petroleum ether extracts of selected samples upon TLC analysis proved Rf values corresponding to lupeol. HPTLC analysis revealed that the sample treated with YE displayed relatively higher amount (975.50 ng) of lupeol than the in vivo plant (713.69 ng). Hence the in vitro shoot culture system with elicitor (YE) treatment propose an appropriate method for the elevated synthesis of lupeol which can be scaled up via bio-reactor technology in doing so profiting the pharmaceutical appliances

    Ec-A: A Task Allocation Algorithm for Energy Minimization in Multiprocessor Systems

    No full text
    With the necessity of increased processing capacity with less energy consumption; power aware multiprocessor system has gained more attention in the recent future. One of the additional challenges that is to be solved in a multi-processor system when compared to uni-processor system is job allocation. This paper presents a novel task dependent job allocation algorithm: Energy centric- Allocation (Ec-A) and Rate Monotonic (RM) scheduling to minimize energy consumption in a multiprocessor system. A simulation analysis is carried out to verify the performance increase with reduction in energy consumption and required number of processors in the system

    A QUANTITATIVE STUDY BASED ON DIRECT MEASUREMENT ON EMBEDDED PROCESSORS LIMITING CONTEXT SIWTCHES FOR ENERGY SAVING

    No full text
    Priority based preemptive schedulers are preferred over non-preemptive schedulers due to their flexibility to accommodate real time tasks based on criticality. The overhead associated with a preemptive scheduler is high and with increased number of preemptions and the associated context switches, the execution pattern of tasks become highly unpredictable at run time. In this paper, an effort is made to provide an insight into the significance of controlling context switches during real time application development. The system under study consists of an ARM7 LPC2148 microcontroller, whose energy consumption measurement is carried out with the help of MBED NXP 1768 controller. A study is done by analytical verification and a software simulation using embedded C with Keil uVision IDE. The energy consumed by the processor with and without context switches is verified experimentally by direct measurement. The two factors considered for analysis are increased delay and the augmented energy dissipation during a context switch. It is seen that a substantial saving of time and energy is associated with every context switch

    Development of a solar reflector coating on AA6061 alloy by plasma electrolytic oxidation

    No full text
    A spacecraft consists of various components which will function with maximum efficiency only when their operating temperature is maintained within certain specified ranges. Passive thermal control elements play an important role in maintaining the temperature of spacecraft components within the specified ranges by suitable selection of thermo-optical properties of the surfaces namely absorptance and emittance. Plasma electrolytic oxidation of AA 6061 is studied as a method to develop a solar reflector coating for space applications. The coatings are developed by making use of a silicate-based electrolyte. The influence of electrolyte composition, average current density, processing time, positive on-time and pulse frequency on the thermo-optical behaviour of the coating is studied. The thickness of the PEO coating is optimized so as to attain thermo-optical properties similar or better than conventional sulphuric acid anodizing. The optimized coating is subjected to adhesion and humidity tests as well as various space simulation tests such as thermal cycling and thermo-vacuum performance tests to evaluate the suitability of the coating as a thermal control surface for space application. Coatings obtained by PEO process and conventional sulphuric acid anodizing are further characterized using SEM, EDX, XPS, XRD and nanoprofilometry to have a comparative study of their morphology, microstructure and composition
    corecore